Virtual PaintShop – Simulation of Electrocoating

Virtual PaintShop – Simulation of Electrocoating

Project time: 2020 – 2023

Budget: 7 900 000 kr

Novel methods, techniques and software for simulation of electrodeposition and galvanization processes.

The surface treatment is the process in an automotive factory that consumes most energy, water and chemicals, and produces most waste and pollution. The paint shop is also a bottleneck in production and the processes are fine-tuned based on testing on numerous prototypes. The product preparation process therefore needs to be improved and supported by fast and reliable simulation tools. In the project novel methods, techniques and software, and supporting measurement methodology, for simulation of electrocoating and galvanization will be developed. The aim is that the resulting software leads to a reduced commissioning time for the processes of new products by 20%, and that the environmental impact is reduced since significantly less prototypes need to be built and physically tested. The application is based on earlier work on the Virtual Paint shop by a strong research team that is leading the development of simulation software for surface treatment processes. Dipping processes are commonly used for surface treatment of many different products. This is reflected in the project consortium, where research institutes and the major Swedish OEMs are complemented by surface treatment companies with customers in many industries, and a furniture company. Their process challenges are very similar and the diverse consortium will provide for a fruitful cross-industrial technology and knowledge transfer

Participating researcher(s)

Partners

Share

Similar projects

Virtual PaintShop – Simulation of Oven Curing

The paintshop is often a bottleneck in production and the processes are fine-tuned based on testing on numerous prototypes. To meet the future demands there is a great need to improve the product preparation process. The aim is to develop methods, techniques and software, and supporting measurement methodology, for simulation of paint curing in IR and convective ovens. The goal is to assist the industry to further develop and optimize their surface treatment to be more energy and cost efficient; to have a shorter lead time in product development; and to give a higher product quality.

2016 – 2019

Virtual PaintShop – Simulation of Oven Curing

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

SCARCE II will develop a demonstrator to show how SMEs and associated value flows can increase efficiency, competitiveness, sustainability and internal collaboration through digitalisation. The goal is to show the value of a new digital solution. SCARCE focuses on two subcontractors in the value chain linked to Scania and Volvo. The demonstrator is a cloud-based solution that connects three test beds in the industry; Stena Industry Innovation Lab, Chalmers, RISE IVF lab, Mölndal and KTH's test bed in Södertälje with the help of Siemens, AFRY, Qbim, Virtual Manufacturing and EQPack.

2020 – 2022

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

Humle – Human Perspective, Machine-Learning ERP-systems

This project aims to contribute to the development of future ERP-systems. The project will explore how to offer work, redefine work roles and challenge companies to make use of advanced systems support and the technology within and around these. Overall, the project aims to contribute to the development of both the next generation of ERP-systems and a complementary change in the way firms see upon work organization, so that technology can support and meet the needs of the humans within organisations rather than enforcing structures upon them.

2019 – 2019

Two major disruptive trends – electrification and digitalization are changing customer preferences, leading to the probably most substantial transformation in the automotive industry we observed in decades. Finding a balance between customer’s requirements towards “zero-emission vehicle,” “connected car,” choice of materials, clarity of functions, and interface modes under the pressure of production time and cost are not easy. The AttributDo-project aims to help engineers create, define, verify and validate new and existing design features for new product development.

2021 – 2021

Sensible Value Chain: Material Flows, Roles and Circular Economy – SCARCE

SCARCE will investigate the needs, possibilities and obstacles in value chains up- and down-stream from a focal SME company. SCARCE will explore what data to measure and visualize, and how this data can enable more automated execution, as well as, more dynamic and proactive planning of production capacity and material flows across the companies in the value chain. In addition, we will study organizational capabilities, especially the future human role, for implementing and managing in a digital and data-driven value chain.

2019 – 2019