Digitalisation concept for bi-material casting (DIGICAST)

Project time: 2015 – 2016

Budget: 750 000 kronor

The project aims a digitising the temperatures during the casting of rolls and suggest actions to the casting manager to reduce the variability of the process

Casting is a critical step in the manufacturing process of rolls. Probably the most significant parameters for the quality of the roll are the casting temperatures for the shell material and the core when the core is cast into the shell. Today´s manufacturing relies entirely on manual logging of temperature and manual extrapolation of temperature curves for the casting manager to decide when the core material should be cast into the shell.

The proposed project aims at using digital technique to assist the casting manager to steer the casting process in an optimized w ay and significantly reduce some variability in the process.

The different steps in the project are to create a program for acquisition of temperature. In parallel to this two models will be developed to predict the cooling of the core and shell materials. Offline calibration of the models will be done based on historical data. Then the program will be developed in order to suggest actions to the casting manger in order to control the cooling of the core material in the ladle. Finally the program will be tested in realtime in production.

Participating researcher(s)

Partners

Share

Similar projects

Virtual PaintShop – Simulation of Oven Curing

The paintshop is often a bottleneck in production and the processes are fine-tuned based on testing on numerous prototypes. To meet the future demands there is a great need to improve the product preparation process. The aim is to develop methods, techniques and software, and supporting measurement methodology, for simulation of paint curing in IR and convective ovens. The goal is to assist the industry to further develop and optimize their surface treatment to be more energy and cost efficient; to have a shorter lead time in product development; and to give a higher product quality.

2016 – 2019

Virtual PaintShop – Simulation of Oven Curing

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

SCARCE II will develop a demonstrator to show how SMEs and associated value flows can increase efficiency, competitiveness, sustainability and internal collaboration through digitalisation. The goal is to show the value of a new digital solution. SCARCE focuses on two subcontractors in the value chain linked to Scania and Volvo. The demonstrator is a cloud-based solution that connects three test beds in the industry; Stena Industry Innovation Lab, Chalmers, RISE IVF lab, Mölndal and KTH's test bed in Södertälje with the help of Siemens, AFRY, Qbim, Virtual Manufacturing and EQPack.

2020 – 2022

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

Sensible Value Chain: Material Flows, Roles and Circular Economy – SCARCE

SCARCE will investigate the needs, possibilities and obstacles in value chains up- and down-stream from a focal SME company. SCARCE will explore what data to measure and visualize, and how this data can enable more automated execution, as well as, more dynamic and proactive planning of production capacity and material flows across the companies in the value chain. In addition, we will study organizational capabilities, especially the future human role, for implementing and managing in a digital and data-driven value chain.

2019 – 2019

Humle – Human Perspective, Machine-Learning ERP-systems

This project aims to contribute to the development of future ERP-systems. The project will explore how to offer work, redefine work roles and challenge companies to make use of advanced systems support and the technology within and around these. Overall, the project aims to contribute to the development of both the next generation of ERP-systems and a complementary change in the way firms see upon work organization, so that technology can support and meet the needs of the humans within organisations rather than enforcing structures upon them.

2019 – 2019

Two major disruptive trends – electrification and digitalization are changing customer preferences, leading to the probably most substantial transformation in the automotive industry we observed in decades. Finding a balance between customer’s requirements towards “zero-emission vehicle,” “connected car,” choice of materials, clarity of functions, and interface modes under the pressure of production time and cost are not easy. The AttributDo-project aims to help engineers create, define, verify and validate new and existing design features for new product development.

2021 – 2021