Sustainable And Circular SAND Recycling (SANDRA)

Sustainable And Circular SAND Recycling (SANDRA)

Project time: 2023 – 2024

Budget: 12 000 000 kr

Funding: FFI – Strategic Vehicle Research and Innovation

Reduce the environmental impact of foundries by reducing the amount of sand waste using machine learning.

This project stands as a pioneering endeavour to digitally transform the casting process in foundries, by integrating empirical measurements, numerical modelling, and machine learning within sand reclamation processes.

Currently, there is lack of scientific understanding and expertise amongst foundries to discern how different recycling routes and sand molding process parameters impact the casting quality. The project aims to introduce a machine learning sand reclamation model to assist foundries in optimizing process parameters, better manage their sand recycling process, optimize their material consumption, and decrease the amount of cast defects.

Through the cooperation between the partners within this project results from basic research and applied research can be quickly implemented to the sand system of the industry.

Partners

Share

Similar projects

Sensible Value Chain: Material Flows, Roles and Circular Economy – SCARCE

SCARCE will investigate the needs, possibilities and obstacles in value chains up- and down-stream from a focal SME company. SCARCE will explore what data to measure and visualize, and how this data can enable more automated execution, as well as, more dynamic and proactive planning of production capacity and material flows across the companies in the value chain. In addition, we will study organizational capabilities, especially the future human role, for implementing and managing in a digital and data-driven value chain.

2019 – 2019

Virtual PaintShop – Simulation of Oven Curing

The paintshop is often a bottleneck in production and the processes are fine-tuned based on testing on numerous prototypes. To meet the future demands there is a great need to improve the product preparation process. The aim is to develop methods, techniques and software, and supporting measurement methodology, for simulation of paint curing in IR and convective ovens. The goal is to assist the industry to further develop and optimize their surface treatment to be more energy and cost efficient; to have a shorter lead time in product development; and to give a higher product quality.

2016 – 2019

Virtual PaintShop – Simulation of Oven Curing

Enabling REuse, REmanufacturing and REcycling Within INDustrial systems (REWIND)

The REWIND project combines the principles of lean production and eco-efficiency in three industry pilots at Stena Recycling, Volvo AB and IKEA GreenTech. The objective is to retain the value embedded in materials with circular strategies (reuse, remanufacture, recycle, repurpose, etc.). Lessons learnt from the pilots will be used to develop educational tools for engineers and industry leaders to accelerate the uptake of best practices for circularity and sustainable production.

2019 – 2022

Two major disruptive trends – electrification and digitalization are changing customer preferences, leading to the probably most substantial transformation in the automotive industry we observed in decades. Finding a balance between customer’s requirements towards “zero-emission vehicle,” “connected car,” choice of materials, clarity of functions, and interface modes under the pressure of production time and cost are not easy. The AttributDo-project aims to help engineers create, define, verify and validate new and existing design features for new product development.

2021 – 2021

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

SCARCE II will develop a demonstrator to show how SMEs and associated value flows can increase efficiency, competitiveness, sustainability and internal collaboration through digitalisation. The goal is to show the value of a new digital solution. SCARCE focuses on two subcontractors in the value chain linked to Scania and Volvo. The demonstrator is a cloud-based solution that connects three test beds in the industry; Stena Industry Innovation Lab, Chalmers, RISE IVF lab, Mölndal and KTH's test bed in Södertälje with the help of Siemens, AFRY, Qbim, Virtual Manufacturing and EQPack.

2020 – 2022

SCARCE II – Sensible Value Chain through Digitalised Planning, Materialhandling and Circular Economy

Polyfree 2.0

Cyclicor, which has its origins at Lund University, has in a previous project within Mistra Innovation successfully developed a method for producing the plastics polycarbonate (PC) and polyurethane (PU) without toxic additives. One goal of the Polyfree 2.0 project is to increase the production of the new plastics from lab scale to quantities that enable the participating industrial companies in turn to take steps towards finished products. Other goals are for the plastics to be recyclable as well as have the required properties.

2021 – 2023

Polyfree 2.0

Humle – Human Perspective, Machine-Learning ERP-systems

This project aims to contribute to the development of future ERP-systems. The project will explore how to offer work, redefine work roles and challenge companies to make use of advanced systems support and the technology within and around these. Overall, the project aims to contribute to the development of both the next generation of ERP-systems and a complementary change in the way firms see upon work organization, so that technology can support and meet the needs of the humans within organisations rather than enforcing structures upon them.

2019 – 2019