Predictive Maintenance using Advanced Cluster Analysis (PACA)

Projekttid: 2019 – 2022

Budget: 5 000 000 kronor

Satsning: SIP Produktion2030

Utveckla och validera algoritmer för prediktivt underhåll baserat på AI och ML. Visionen är haverifri produktion.

Prediktivt underhåll baserat på artificiell intelligens och maskininlärning är ett topprankat användarfall med avseende på affärsnytta inom industriell digitalisering. Inte så konstigt med tanke på att Svensk tillverkningsindustri årligen betalar över 100 miljarder kr i underhållsrelaterade kostnader och 60% av alla underhållsaktiviteter är reaktiva. Projektet PACA har som mål att utveckla algoritmer för prediktivt underhåll, baserat på avancerad klusteranalys, för att öka precisionen och förståelse hos en beslutsfattare.
Tre användarfall kommer att tillhandahålla multipla dataströmmar (sensorer och datorsystem) från flera maskiner. Data kommer att analyseras tillsammans för att kunna identifiera intressanta mönster som kan jämföras mellan de olika maskinerna samt deras historiska loggar. Detta kommer att generera kunskap om hur olika mönster korrelerar med slitage, vilket senare kan användas för att designa en algoritm som predikterar framtida tillstånd/haverier av maskiner.
Förväntade effekter inkluderar ökad produktivitet, robusthet, resursutnyttjande och kompetens inom Smart underhåll och avancerad dataanalys. Konsortiet är tvärvetenskapligt och består av tillverkningsbolag, service och IT leverantörer samt universitet och högskola med expertis inom både Smart underhåll och avancerad dataanalys.
Vinnovas dnr: 2019-00789

Deltagande forskare

Partners

Dela

Liknande projekt

Search Next Previous Deselect Project manager URL Document Partner Calendar Place Close Menu Expand User Log out Profile