QWELD

QUALITY ASSURANCE OF LASER WELDS

November 2021- Maj 2025

Strategic innovation programmes

Rohollah (Amir) Ghasemi Virtual Manufacturing Processes (VMP) University of Skövde rohollah.ghasemi@his.se Tel: +46 (0) 72 00 16 422

Colleagues at HiS: Andreas Andersson Lassila Tobias Andersson Dan Lön

FOUNDERS:

WITH SUPPORT FROM:

VINNOVA

CHALMERS

(KTH)

COORDINATOR:

Teknikföretagen

RI. Se

KTH

PRODUCTION

<!>>

VINNOVA

Strategic innovation programmes

CEnergimyndigheten FORMAS

Teknikföretagen

~

Demonstration of some laser welding applications

CEnergimyndigheten FORMAS

VINNOVA

PRODUKTION2030

OORDINATOR

Teknikföretager

FOUNDERS

SWEDISH PRODUCTION

ACADEMY

Agenda

- Our laser machine
- Materials and applications
- Ongoing research projects
- Laser welding of copper hairpins
- Laser welding of aluminium for battery applications
- Design of experiments and surface response methodology
- Laser welding simulations
 - Weld bead shape
 - Porosity formation
 - Copper hairpins

RI. SE

Process simulations to structural simulations

CHALMERS

WITH SUPPORT FROM

VINNOVA

Energimyndigheten

Strategic innovation programmes

FORMAS

Our laser machine

Machine

• 5-axis laser machine for welding and cutting

Laser source (TruDisk 6001)

- "Solid-state" disc laser
- Wave length: 1030 nm (infrared)
- Adjustable laser power: 120 W 6000 W
- Equipped with sensors for in-line quality assurance

RI. SE WITH SUPPORT FROM:

VINNOVA

CHALMERS

Process adapters (laser heads)

- Adapter for cutting
- Adapter for welding

FOUNDERS

COORDINATOR:

Teknikföretagen

Programable Focusing Optics (PFO)

SWEDISH PRODUCTION

ACADEMY

Strategic innovation programmes

FORMAS

Images downloaded from: https://www.trumpf.com/en_US/products/machines-systems/laser-welding-systems-and-the-arc-welding-cell/trulaser-cell-3000/ [2023-05-01].

Laser Welding Photodiode-based In-Process Monitoring

4D Photonics

Materials and applications

Materials

- Copper
- Aluminum
- Steel, stainless steel
- Nickel-plated materials (copper and steel)

WITH SUPPORT FROM

VINNOVA

CHALMERS

Applications

- Hairpin stators
- Batteries

Strategic innovation programmes

Energimyndigheten FORMAS

- Hydraulic couplings
- Transmissions
- Sheet metal applications

COORDINATOR:

Research projects

- UDI 3 (Vinnova)
 - LEAX
 - Aurobay
 - Volvo cars
 - Volvo GTO

- QWELD (Vinnova/ Produktion2030)
 - Aurobay
 - CEJN
 - Furhoffs
 - Koenigsegg
 - RISE
 - Volvo GTO

- LaserBATMAN (Vinnova/EU)
 - Aurobay
 - Volvo GTO
 - DTU
 - Resolvent

Laser welding of copper hairpins

- Investigate how different welding parameters affect:
 - Welding depth
 - Resulting temperature fields
 - Porosity in the joint
 - Mechanical strength

Figure downloaded from: https://www.automotiveev.com/volkswagen-group-components-to-supply-the-electric-drive-for-the-new-id-3/ [2023-04-25].

OORDINATOR:

Teknikföretager

Laser welding of copper hairpins

Welding path:

FOUNDERS

PRODUCTION

Power = 6000 W Feed rate = 1000 mm/s n = 16 rep Circle

WITH SUPPORT FROM

CHALMERS

Power = 6000 W Feed rate = 270 mm/s n = 2.5; 1.25; 2 rep BrightLine and 3 ellipses

Welding path:

Steriges innovationsmyndighet

Laser welding of copper hairpins

- Computed Tomography (CT) scanning to analyse:
 - Porosities in the weld joint
 - Welding depth (depends on the application)

FOUNDERS

WITH SUPPORT FROM:

COORDINATOR:

Teknikföretager

Laser welding of copper hairpins

WITH SUPPORT FROM

VINNOVA

FORMAS

CHALMERS

KTH

- Welding depth from CT-scans
 - Measured distance from top of weld bead to the gap between pins
 - Welding depth can only be measured if there is a gap (CT-data only show differences in density)
- Welding depth from metallographic investigation

FOUNDERS

2

PRODUCTION

- Cutting, grinding, polishing, etching, microscopy
- More time consuming compared to CT-scanning

RI. SE

Laser welding of aluminium for battery applications

Power = 1000 W Feed rate = 25mm/s Energy = 40 J/mm (constant)

Power = 3000 W Feed rate = 75mm/s Energy = 40 J/mm (constant)

Strategic innovation programmes

Power = 5000 W Feed rate = 125mm/s Energy = 40 J/mm (constant)

WITH SUPPORT FROM

Design of Experiments (DoE) and Surface Response Methodology (SRM)

Methodology to investigate the effect of different laser processing parameters on joint/weld characteristics:

Design of experiments (DoE):

eg. CCD, Box-Benhken

ACADEMY

Teknikföretager

- Experiments and data gathering:
 - Laser welding experiments
 - Temperature measurements _
 - Metallographic investigation _
 - CT-scanning _

WITH SUPPORT FROM

VINNOVA

Strategic innovation programmes

FORMAS

Data analysis:

- Surface Response Methodology (SRM)
- eg. linear regression, neural networks

Laser welding simulations: Weld bead shape

- CFD simulations of laser welding processes
 - Softwares: Flow 3D and Flow 3D Weld
 - Multi-physics, computational fluid dynamics (CFD) problem

RI. SE

KTH

- Implementing the Volume of Fluid (VOF) method
- Used to predict:

OORDINATOR:

Teknikföretager

- Weld bead/keyhole shape
- Melt pool flow and shape
- Resulting temperature fields
- Porosity formation

FOUNDERS

PRODUCTION

Energimyndigheten

WITH SUPPORT FROM

VINNOVA

CHALMERS

Stainless steel 1.4404: P = 1200W v = 7 m/min

 $\begin{array}{l} P=1200W\\ v=14 \text{ m/min} \end{array}$

Strategic innovation programmes

FORMAS

P = 1200W v = 10.5 m/min

Problem Area

Strategic innovation programmes

- 1) Laser welding of battery
 - Met and battery case (busbar)
 - Component
 - ➢ Welding's trials
- 2) Weld quality examination
 - Microstructural investigations
 - ➤ CT-scanning

WITH SUPPORT FROM:

VINNOVA

- CFD simulation of laser welding process
 - Softwares: Flow 3D and Flow 3D Weld
 - Multi-physics, computational fluid dynamics (CFD) problem
 - Implementing the Volume of Fluid (VOF) method
- Used to predict:
 - Weld bead/keyhole shape
 - Melt pool flow and shape
 - Resulting temperature fields
 - Porosity formation

FOUNDERS

2

Longitudinal direction (melt region)

Longitudinal direction (micrograph)

CHALMERS

WITH SUPPORT FROM

Meta model-based multi-objective optimization of laser welded dissimilar material joints for battery components

Ref. Andreas Andersson Lassila

ANN-based meta models for objective approximation

- Independent variables = Power (P), Feed rate (v_f) and Wobbling frequency (f_w)
- Dependent variables (quality measures) =
 - Weld seam appearance
 - In-process temperatures
 - Interface width
 - Welding depth

Strategic innovation programmes

- Width/length of weld seam ٠
- Welding depth ٠
- Interface width ٠
- Defects (porosity, hot cracks ٠ etc.)

Sample 14

1

8

VINNOVA

WITH SUPPORT FROM:

FORMAS

Laser welding simulations: Porosity formation

- CFD simulation of porosity formation in copper
 - Porosity formation in the bottom of the keyhole due to key collapse

WITH SUPPORT FROM:

Laser welding simulations: copper hairpins

- CFD simulation of laser welding of copper hairpins
 - Temperature and melt region

Process parameters:

P = 6000Wv = 1000mm/s n = 20 rep 1x3mm ellipse

WITH SUPPORT FROM:

FORMAS

Process simulations to structural simulations

WITH SUPPORT FROM:

VINNOVA

Data flow Structural simulation: Process simulation: Complete component modelled with FEM Process zone modelled with CFD _ Temperature Time: 0.000 - 1723.000 - 1500 - 1000 293.000 Temperature Von Mises stress Abacus/Standard 2022 Thu Apr 20 16:28:37 W. Europe Davient 008: LW_3D_xy1.odb Abagus/Standard 2022 Thu Apr 20 16:28:37 W. Europe Daylight Te p: Step-1 rement 0: Step Time = 0.000 nary Var: NT11 Step: Step-1 Increment 0: Step Time = 0.000 Primary Var: 6, Mises Deformation Scale Factor: +1.000e+0

FORMAS

Strategic innovation programmes

- Stainless steel EN 1.4404:
 - Power = 1200 w

FOUNDERS:

~

COORDINATOR:

Teknikföretagen

- Feed rate = 10.5 m/min

PRODUCTION

RI. SE

Thanks for your attention