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of cats that are both ah\e and dead at the same time, or lack
understanding of how superposition and entanglement can
possibly result in accurate and useful computations, the
fundamental tools are being developed to bring quantum
technologies into the mainstream. It is not necessary to
understand how quantum technologies work, only what

they can do. The inspiring projects and people covered in
this issue show we are nearly there - embryonic applications
are happening now. Moreover, this is a set of technologies
that could accelerate development and redefine what we can
expect of the future.

The ”"Real Age of Al”

Menu =

DUL 1N terms oI processing
speeds it is a potential game-changer. Complex processing
that may now take hours or even days will be reduced to
seconds, so with virtual real-time decision-making from
simulations the real age of artificial intelligence could be
upon us. It is just one example of the possibilities.

[IET, UK, 2019]
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Virtual Factory Based Data Analytics*

- Sanjay Jain, Guodong Shao, and Seung-Jun Shin
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Figure 1: Stages of analytics maturity and associated technologies
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VIRTUAL FACTORIES WITH KNOWLEDGE-DRIVEN OPTIMIZATION
POWERED BY UNIVERSITY OF SKOVDE. SWEDEN

An interactive and iterative methodology that integrates simulation,
optimization, knowledge discovery, visualization and decision making, i.e.,
Knowledge-Driven Optimization (KDO)
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» Bandaru, S., Ng, A.H.C. and Deb, K. (2017). Data Mining Methods for Knowledge Discovery in Multi-Objective Optimization: Part A & B. Expert Systems with Applications, VVol. 70, 119-159.
* Ng, A.H.C., Bandaru, S. and Frantzén, M. (2016). Innovative Design and Analysis of Production Systems by Multi-objective Optimization and Data Mining. Procedia CIRP, 50, 665-671.
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Why does Al need simulation?

+ Al needs a lot of high-quality training data which can be too expensive (or
simply infeasible) to gather from the real system/equipment. Simulations
and Digital Twins can provide a safe and cheaper environment for training
the Al algorithms.

Why do Digital Twins need Al?

+ By definition, Al/ML provides the analytics capability for controlling the real
counterpart of the digital twin.
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Four Crucial Questions

* Where come the “data” used to train the algorithms?
+ Without quality (historical and “future”) data, Al does not work
¢* What are our (Human) values and goals?
* What do we want to achieve with intelligent machines? Are we building
intelligent machines to assist or replace humans?
¢ Is the understanding for the machine or for humans?
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“...the best chess player
in the world is neither
man nor machine...

PLATFORM "
.. but both — a team of computer-assisted chess players is =z -'f?:-c R_OWD

still able to defeat any chess playing machines (68%)”

DREW McAFEE -
| BRYNJOLFSSON«

[McAfee and Brynjolfsson 2017]

“We’ve decided it’s more about building a better human-machine combination than it
is about building a machine where we will be lucky if it wants us around as a household
pet.”

[Rosalind Picard, Founder of the MIT Media Lab. Affective Computing Research, in a 2012 interview]
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* In alot of early work in Al, humans
explicitly devised an algorithm to solve
a particular problem. In more recent Al,
they do not. Instead, they devise a
general learning algorithm, which then
“learns” a solution to the problem.
Often the human developers don’t know
an explicit algorithm for solving the
problem and don’t know how the
system arrives at its conclusions.

[John C. Lennox (2020) 2084, p. 21]

The distinction between explanation and
understanding is very important.
Understanding in science is a deep
experience going beyond mere predictive
power or the currently fashionable
notion of algorithmic compressibility.

[John C. Polkinghorne (1994), The Faith of a Physicist:
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EXPlainable and Learning production Koordinator: Uppsala Universitet
& logistics by Artificial Intelligence
<EXPLAIN>

Aim & Objectives:
The overall aim of the EXPLAIN project is to increase the profitability, sustainability, and competitiveness of the Swedish
manufacturing industry. The project conducts research and development of a new generation of interactive and innovative fusion of
virtual production modeling methods and machine learning algorithms for decision-making support and increasing knowledge and
competence within the production systems lifecycle. EXPLAIN will target cases on production planning and control with humans-in-
the-loop, wherein complex multi-criteria decisions are to be made, including energy and resource efficiency.

Expected Results:

The EXPLAIN project brings into a paradigm that emphasizes the human-machine co-learning through transferability of
preferences/values and knowledge between human and machine within a multi-objective (productivity and sustainability)
optimization context and hence will provide a unique, long-term contribution to knowledge-driven industry in Sweden. Fully in-line
with other worldwide Learning Factories efforts, the human-machine symbiosis framework proposed can in the long-term increase

the sustainability and competitiveness of the Swedish manufacturing industry.

Prnialitnartar:
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Projekttid: 2021-04-15 — 2024-04-14 a5
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Budget: 12 774 000 kr (bidrag fran Vinnova 6 Mkr)
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Consortium and Keywords

Uppsala University IndTek: Multi-Objective and Explainable Al/ML, Process Mining
technologies

KTH Sédertalje: automatic model generation and sustainability modeling

AstraZeneca Sodertalje: simulation modeling and optimization

Hitachi-ABB Ludvika: Process Mining; simulation-based optimization

MainlyAl Stockholm: SME supplying an Al operational platform, Miranda
e Scania Sodertalje: sustainability, HMI, energy modelling & optimization
e SECO Tools Fagersta: Al-based production scheduling and human learning

e RISE Mdlndal: sustainability modeling and knowledge dissemination
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A Predictive Analytics Tool for

AstraZeneca
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Company databases

=

Data-oriented analys

A Production Scheduling Case of Seco Tools

Expected Research Outcomes:

* Digital Twin Based Bottleneck Analysis

* Human learning on optimal dispatching/batching rules.

e Optimal, Real-Time Al decision-making, especially on

uncertain production scenarios.
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Deep Reinforcement Learning for Oven Scheduling
Al Agent

Control real-
world ovens
after training

Training Results
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Data/Heuristic from Production
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An Ontology

“It is well known that the decision-making process
results from communication between the
prefrontal cortex (working memory) and
hippocampus (long-term memory). However, there
are other regions of the brain that play essential
roles in making decisions, but their exact
mechanisms of action still are unknown.”
Moghadam et al. 2019

An Algorithmic Model of Decision Making in the
Human Brain
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Converting Structured Group Decision Support
Activities to Graph Database Queries (Active
Research started 2023Q3)

NV =-Ko 0

VIRTUAL FACTORIES KNOWLEDGE DRIVEN OPTIMISATION
POWERED BY UNIVERSITY OF SKOVDE, SWEDEN

Extracting which DM
e favours which design
. variables from the KDO data

Key group decision support features aimed by VF-KDO research - transparency, traceability and information sharing to enable:
effective communication channels that encourage open and honest dialogue among stakeholders;
diversity of thought and minimize the impact of groupthink.
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Conclusion & Current Work:
Some good results, but not yet there!

* We have demonstrated Deep Reinforcement Learning (DRL) models trained
with data-driven, online simulation produce comparable results as multi-
objective optimization in industrial scheduling problems that maximize oven
utilization, minimize tardiness and energy consumption.

* The research hypothesis is that DRL and high-level Al can be more robust than
simple simulation-based optimization in handling anomality/uncertainty that
can be embedded in the simulation during training and we are testing it with
the EXPLAIN and other company cases.

¢ We will demonstrate the VF-KDO Knowledge Graph prototype next time!

P VIi--IKo0oO @PRODUKTIOHZOBO

VIRTUAL FACTORIES KNOWLEDGE DRIVEN OPTIMISATION
POWERED BY UNIVERSITY OF SKOVDE, SWEDEN
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