Virtual Verification of the Hemming Process – VIVFAP

Fredrik Edelvik, Assoc. Prof, Vice Director FCC Alf Andersson, Adj. Prof., Technical expert Volvo Cars

Manufacturing Clusters Conference, May 23 2024

Motivation to project

RI SE

Atlas Copco

FFF Fordonsstrate

- Problems with quality issues in products with hemmed edges cost much in time and cost
- Tuning and adjustments demand large efforts in time and money (complex cases can demand 700h)
- Simulation tools are used to a very limited extent
- Current simulation tools do not take glue/curing into account

Virtual Verification of the Hemming Process – VIVFAP

Project goals

- Implementation of methods and tools in industry for hemming simulation without adhesive
- Research and development of methods and tools that include the effect of adhesive in the hemming simulation

Benefits

- Shorter lead time for industrialization
- · Less adjustment time for hemming process
- Improved quality for HOP parts

Project funding

- Total project budget: 16.65 MSEK
- Vinnova funding: 7.5 MSEK
- Industrial contribution: 9.15 MSEK

Project time

• April 2020 – November 2023

AtlasCopco

Project content

Workpackages:

- WP 1 Mapping of Hemming Process (State Of The Art)
- WP 2 Simulation of Hemming Process Without Glue
- WP 3 Simulation of Hemming Process With Glue
- WP 4 Curing Process and its Effect on The Hemming System

AtlasCopco

- WP 5 Measurement Processes
- WP 6 Quality
- WP 7 Administration

RI. SE

FFF Fordonsstrate

Result from industrial case study

Front Fender V54X - VCC

• Aim:

Verification model for hemming simulation without adhesive

Model

- Simulation model based on nominal CAD
- Initial simulations including assembly of reinforcements (riveting)

W

Source: Mats Sigvant, Autoform

- Scanning of parts from ingoing processes in different steps
- Analysis of spotting of hemming steel positions

Conclusion:

- Simulations and test shows good agreement
- Non documented changes in the process where detected in simulations

Source: Philip Carlström, VCBC

ström, VCBC

_

ström, VCBC

Modelling and optimization of adhesive joining process

Immersed Boundary Octree Flow Solver

- State-of-the-art solver for complex flow applications
 - In-compressible finite volume solver
 - Coupling using SIMPLE-C method
 - Unique immersed boundary techniques
 - Greatly simplified pre-processing no "bodyfitted" meshing
 - Dynamic and adaptive octree grid
 - GPU acceleration
 - Spalart-Allmaras and k-omega SST turbulence models with stress-based wall model treatment
 - Complex rheology
- Interfaces to other tools
 - LaStFEM[™] for fluid-structure interaction
 - Demify[®] for DEM-CFD applications
 - CST MICROWAVE STUDIO for electronics cooling

LaStFEM

- Accurate simulations of structural deformations using the Finite Element Method (FEM)
- Models for slim and bulky structures undergoing large deflections and frictional contact
 - Steel, aluminium, rubber, composites
- Welding
 - Thermo-mechanical coupling
- FEM engine in several software tools
 - RD&T (Geometry assurance)
 - IPS Bellows & Grommets
 - IPS Flat Cables

IPS Oven Simulation

Design your oven to optimize heat transfer and curing using unique simulation technology

- Unique algorithms for accurate and close to real time simulation of oven curing
- Powerful design tools and automatic meshing to setup your oven simulation in just a few hours
- Proven accuracy in industrial benchmarks
- Support for convective ovens
- Curing window analysis
- Export of temperature curves for thermomechanical analyses

R&D contributions to simulation of adhesive joining

Flow solver

- Phase-dependent adaptive time-stepping and SIMPLE iterations have been introduced to optimize the adhesive's time step and thus reduce the total number of time steps.
- Adaptive volume mesh refinement to handle narrow gaps

Adhesive

- A new backwards-tracking Lagrangian-Eulerian method has been developed to enable simulation of twophase with a viscoelastic adhesive and the surrounding air
 - A Lagrangian-Eulerian Simulation Method for Viscoelastic Flows Applied to Adhesive Joining, S. Ingelsten, PhD thesis, Chalmers University of Technology, May 2022

Structural solver

- To improve prediction of sheet metal deformation an anisotropic plasticity model (YLD2000) for shell elements has been developed
- Improved matrix assembly. Allow for computation on active zone close to hemming tools

Hybrid joining cell @ RISE

Experimental data from RISE

- Roll hemming of the test coupon performed at RISE
- Several test sections are studied and measured
- Adhesive bead height (H) and distance from flange varied (R)
 - H = 2.5, 3.0 and 3.5 mm
 - R = 5.5 and 8.5 mm
- After the hemming the coupon with adhesive is scanned

Define validation areas

- Identify areas with squeeze-out and not too close to start of bead
- S4 and R4 base case with squeeze-out for both adhesive beads
- Area between C6 and C7 has curved hemming combined with squeeze-out
- These three areas are chosen for experimental validation of the adhesive hemming simulations

Adhesive extrusion

Creation of hemming paths

- Nominal paths are created from recipe and base curve
- Used for planning of robot motion

Nominal gap calibration for C6-C7

- The H = 3mm and R = 8.5 mm experimental setup is used in the calibration
- The area between C6 and C7 is simulated to determine the nominal gaps between the parts
- The simulated squeezed-out adhesive is colored blue
- Several simulations of the area are performed with the gap varying from G = 0.2 to 0.1 mm
- Gap 0.16 mm gives best comparison and is considered as the calibrated value

Hemming simulations

Comparison between simulation and experiments R55

- Distance from bead to flange 5.5 mm
- Gap set to 0.16 mm
- Signs of squeeze-out for R55H25
- Some squeeze-out R55H30
- Large squeeze-out for R55H35
- Trend captured
- Slightly overpredicts amount of squeeze-out, especially for straight side
- Note that the hemming roll has taken a large amount of adhesive from R55H35

Comparison between simulation and experiments R85

- Distance from bead to flange 8.5 mm
- Gap set to 0.16 mm
- No squeeze-out for R85H25
- Signs of squeeze-out for R85H30
- Squeeze-out for R85H35
- Trend captured
- Slightly overpredicts amount of squeeze-out, especially for straight side
- Note that the hemming roll has taken some amount of adhesive from R85H35

Software demonstrator

Summary and future work

- Validation of simulation results against SAM-scanned test bodies from roller hemming with and without adhesive
 - Without adhesive, good prediction of roll-in and hem thickness have been obtained
 - With adhesive, several sections of the coupon have been measured in detail for three different adhesive bead heights and two distances from the hem edge. General trends in adhesive squeeze-out are captured
- Three journal articles, one doctoral thesis and presentations at five conferences
- Ongoing discussions with several companies on adhesive joining simulations including applications in body and battery assembly

