

Energy efficiency in industrial manufacturing using simulation-based optimization Part of the EXPLAIN project

Thomas Schmitt, Scania CV AB Industrial PhD Student Affiliated with Uppsala University

Supervisors

Matías Urenda Moris, Uppsala University Kaveh Amouzgar, Uppsala University, Lars Hanson, University of Skövde Anders Svensson, QFX, Scania

Residential sector

Residential sector

Content of the presentation

Relevance

Ĝ

Energy costs rising

85% of GHG emissions within Industrial Operations by 2030 Science Based Targets - 25% energy use by 2025

 \odot

23

20-40 % of energy used in production is wasted

Background: Energy waste in production

Background: Energy waste in production

Background: Energy waste in production

Geng, D., Evans, S., Kishita Y. (2023). The identification and classification of energy waste for efficient energy supervision in manufacturing factories. *Renewable and Sustainable Energy Reviews*, 173. https://doi.org/10.1016/j.rser.2023.113409

Approach: Simulation-based optimization

Input data

Energy consumption

Process understanding

Discrete-event simulation model

Output data

...

Creating proposals

Production decision

Digital support for production development for energy efficiency through

- Simulation-driven Optimization
 - Data modelling

Use case example

1. Use case

- **Process:** Automated line, new equipment, good data availability. Electricity as main energy carrier.
- **Goal:** The goal of the project is studying how to make the line more energy efficient while ensuring system productivity is not compromised.
- **Hypothesis**: We can model the production line in terms of its productivity and energy consumption to simulate different scenarios and to find the optimal configuration of the line.

2. Data inputs for energy simulation¹

¹VDI 3633 - Simulation of systems in materials handling, logistics and production - Terms and definitions

2. Data inputs for energy simulation¹

Example: Energy data inputs in simulation software

FACTS Analyzer: Define class in code editor

Siemens plant simulation: Offers in-built function

me: pel:	SingleProc1] 🖬	Failed Planned	• E	Entrance locked Exit locked	
imes	Set-Up	Failures	Controls	Exit	Statistics	Importer	Energy	User 4
A	ctive	■		T				
W	orking:	2		Op	Operational → Off:			
Setting-up:		1		Of	Off \rightarrow Operational: 2:05			
O	perational:	0.5555		Ор	Operational \rightarrow Standby: 0:20			
Fa	iled:	1		Sta	Standby \rightarrow Operational: 0:20			
Standby: Off:		0.1	-	Sta	Standby \rightarrow Off: 0:20			
		0.001		Off → Standby: 0:20				
State Transition			Sta	ite:	Operat	tional 👻		

3. Model verification and validation

System	TH [jph]	Relative error [%]
Real production line	80,6	-
DES Model (3 variants)	84,57	4,96
DES Model (4 variants)	84,43	4,78

4. Define studies: Identify energy hotspots and bottlenecks

4. Define studies

- 2 productivity bottlenecks
 - Study 1: Presses (cycle time bottleneck)
 - Study 2: Preassembly cell (availability bottleneck)
- 2 energy hotspots
 - Study 3: Washing machine
 - Study 4: Oven

4. Define studies

$Consumed \ Energy \ per \ Part \ = \ \frac{Total \ Energy \ Consumption}{Produced \ Parts}$

• 2 productivity bottlenecks

- Study 1: Presses (cycle time bottleneck)
- Study 2: Preassembly cell (availability bottleneck)
- 2 energy hotspots
 - Study 3: Washing machine
 - Study 4: Oven

Availability bottleneck: Line stops in pre-assembly cell

Scenario	Availability [%]	TH [jph]	Produced parts [parts/week]	Total Energy Consumption [kWh/week]	Energy Consumption per part [kWh/part]	Energy Savings [SEK/week]
Current situation	79,86	84,57	11840	12043,5	1,017	-
Mitigate 50% of stops	89,93	97,43 [+15.2%]	13640,2	12070,7	0,885 [-12.98%]	2026

Energy hotspot: Washing machine

Energy hotspot: Batch processing in washing machine

Energy hotspot: Optimizing utilization of washing machine 🛞

Energy hotspot: Results of optimizing washing machine

Scenario	TH [jph]	Produced parts [parts/week]	Total Energy Consumption [kWh/week]	Washing Blocked Portion [%]	Relative Idling Time [%]	Energy Consumption per part [kWh/part]	Energy Savings [SEK/week]
Current situation	84,57	11840	12043,5	1,09	0,05	1,017	-
Batch processing: batch_size=96, order_point=22	84,94 [+0.4%]	11891,6	11641,2	4,4	13,97	0,979 [-3,74%]	508

- Method in modeling a production line in terms of production productivity and energy consumption
- Important to take holistic system's perspective
 - JIT may not be the best strategy when the goal is energy efficiency
- The relationship between OEE and energy waste, as well as other forms of energy waste not addressed by OEE

Outlook:

- Defining data requirements for energy optimization in production machines
- Continue to explore the use of SMO for energy efficiency

Creating a demand-driven system design that supplies only the energy needed to fulfill customer requirements

Thank you!

Thomas Schmitt

Industrial PhD Student Scania CV AB Uppsala University

Email: thomas.schmitt@scania.com/thomas.schmitt@angstrom.uu.se

LinkedIn:

Acknowledgement: The presenter would like to acknowledge the support of the Swedish Innovation Agency (VINNOVA). This study was part of the Explainable and Learning Production and Logistics by Artificial Intelligence (EXPLAIN) project with project number 2021-01289.