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Intelligent machining
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Intelligent machining is a process that based on process monitoring and intelligent control
technology, designed to adaptively solve many uncertain problems in the process that
require manual intervention. Its ultimate goal is to realize the intelligent decision-making,
monitoring, and control of the machining process.

Establish the interaction with different systems

– Machine tools

– Sensors

– Controller network

– Big data

– Cloud-based data storage system

• Monitor and extract features

– Machine tools

– Cutting tools

– Workpiece Quality (Surface Roughness) 

Reference Zhu, Kunpeng. Machining Systems | Zhou Z, Xie S, Chen D (2012) Fundamentals of digital manufacturing science. Springer
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Conceptual diagram for smart machining
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Conceptual diagram for smart machining
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Surface Quality Monitoring & Prediction 
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Surface Measurement Accelerometer Microphone

Cutting paramters Prediction Models Ra Prediction

Data 

Acquisition 

Autonomously adjust parameters online

Hard part turning (HPT)
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Hard Part Machining with Multi-sensors
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Core technologies & challenges
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Core technologies

o Sensor integration, sensor network integration

o Integration of communication protocols

o Machine/deep learning algorithm

o Data acquisition of machine tools, process and products

Challenges

o Big data accessibility

o Multi-sensors integration

o Safety guaranteeing

o Security of smart machining system

8
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Experiment 
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Experiment setup
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• Surface roughness measurement

Profilometer: Mitutoyo SJ-210

Cut-off: 0.8

Sampling points: 5

• Vibration measurement

Accelerometer: Dytran 3023A2

Frequency range: 20 Hz – 10k Hz

3-axes: feed (af),  radial (ap), tangential(ac)

SA1

10
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Signal Processing & Augmentation
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Gaussian Noise

෨𝑋 = 𝑋 + 𝛼𝑔𝑎𝑢𝑠𝐺

𝐺 ~ 𝑁(0,1)

Masking Noise

෨𝑋 = 𝑋 + 𝛼𝑚𝑎𝑠𝑘𝐺

Time Shifting

Amplitude Shifting

෨𝑋 = 𝛼𝑠𝑐𝑎𝑙𝑒𝑋

Signal Translation

෨𝑋 ∈ −𝛼𝑡𝑟𝑎𝑛 , 𝛼𝑡𝑟𝑎𝑛𝑠

෨𝑋 ∈ 1, 𝛼𝑠𝑡𝑟𝑒 , 𝛼𝑠𝑡𝑟𝑒 , 1

𝜇 =
σ𝑖=1
𝑁 𝑥𝑖

𝑁

𝑝𝑝 = 𝑋_𝑚𝑎𝑥 − 𝑋_𝑚𝑖𝑛

𝐻 = −෍

𝑖=1

𝑁

)𝑃(𝑥𝑖)𝑙𝑜𝑔𝑃(𝑥𝑖

Mean

Standard Deviation

𝜎 =
σ𝑖=1
𝑁 (𝑥𝑖 − 𝜇)2

𝑁

Skewness

Kurtosis

𝐾𝑢 =
σ𝑖=1
𝑁 (𝑥𝑖 − 𝜇)4

(𝑁 − 1)𝜎4

Peak to Peak

Entropy

𝑆𝑘 =
σ𝑖=1
𝑁 𝑥𝑖 − 𝜇 3

൫𝑁 − 1)𝜎3
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Prediction Models 
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Random Forest - RFSupport Vector 

Machine - SVR

Gradient Boosting 

Regression - GBR

Decision Tree 

Regression - DTR

Extra Trees - ET

• An extension of RF

• Avoid overfitting

• Randomly select 

feature

• Use whole training 

data

• A tree-based 

ensemble method

• weak learners

• Use a bootstrap 

replica to train model

• Easy to interpret

• Transparent structure 

• Each leaf node of 

trees is a simple 

regression model 

• Pruning supports to 

reduce its complexity 

and improve its 

robustness

• A tree-based 

ensemble method

• Suppress potential 

outlier 

• Fit complex nonlinear 

relationship

• Approximate the true 

value by the loss 

function minimization

• Solve non-linear 

problem

• Applied with different 

kernel function 

(Zhang et al. 2021(Lu et al. 2020)
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Model Performance Metrics

Mean Absolute Percentage Error

MAPE

Root Mean Square Error

RMSE

Coefficient of Determination 

R2

Mean Absolute Error

MAE
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Model Performance Comparison
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Model Performance Comparison
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Summary & Future Work
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 Time series data augmentation is efficient method on enlarging amount of data

 Prediction error reduction – lower MAE, higher number of er( <15%)

 More robust or generalized – higher R2

 All data augmentation methods enable to improve generalization of each 
algorithm 

 In regard with prediction error reduction,  Gaussian Noise outperforms others in 
all algorithms

 Extra Trees and Random Forest bring the best outcomes than other algorithms

17

o Multi-sensors (features) fusion 

o Spectrogram and generative AI based augmentation method - GANs

o Advanced deep learning based-algorithm to deploy prediction model


