Development of actuators, sensors and intelligent control systems for sustainable forming processes

RISE - Component Manufacturing

Forming Technology (Olofström)

Mechanical Joining Technology (Mölndal)

I-Stamp

- Scope and objective: Intelligent and sustainable stamping processes using hybrid control strategies. I-Stamp will develop new hybrid control systems, i.e. initially they are run using meta-models, reduced form FEM simulations, and later calibrated with real industrial data.
- Funding: Smart Eureka Advanced Manufacturing / Vinnova
- Total budget 1136 k€ (Sweden 5,9 MSEK)
- Project duration 2022-01-01 2024-06-30

Measuring press deflections

5

Comparison of spotting between physical part and corresponding numerical evaluation

I-Stamp project approach

I-Sens

	A	В	C	D	E
Bild				And	ZXT-LD300
Tillverkare	Micro-Epsilon	Micro-Epsilon	Banner Engineering	Banner Engineering	Omron
Modell	optoNCDT 1320-100	optoNCDT 1420-200	LM250	LE150	ZX1-LD300
Mätområde	100	200	300	100	300
Start	50	60	100	50	150
Focus	100	160	250	100	300
End	150	260	400	150	450
Output 1	4-20 mA	4-20 mA	4-20 mA	4-20 mA	4-20 mA
Output 2	-	0-5 V		-	-
Upplösning	-		100-250 mm: 0,02 mm 250-400 mm: 0,2 mm	0,004 mm	0,03 mm
Repeterbarhet	0,01 mm	0,008 mm	100-250 mm: 0,05 mm 250-400 mm: 0,3 mm	0,002 mm	17) 1
Linjäritet (+/-)	0,1 mm (0,1% FS)	0,16 mm (0,08% FS)	100-250 mm: 0,4 mm 250-400 mm: 0,9 mm	0,07 mm	0,6 mm (0,2% FS)
Mäthastighet	1 ms	1 ms	1 ms	0,25 - 4 ms	1 - 100 ms
Ljuspunkt (start)	1,1 x 0,75 mm	1,1 x 0,75 mm	3,2 x 2,2 mm	2,12 x 0,68 mm	-
Ljuspunkt (center)	1,1 x 0,75 mm	1,1 x 0,75 mm	2,1 x 1,5 mm	1,44 x 0,49 mm	Ø0,52 mm
Ljuspunkt (end)	1,1 x 0,75 mm	1,1 x 0,75 mm	1,2 x 0,9 mm	0,77 x 0,31 mm	243
Matningsspänning	11 - 30 VDC	11 - 30 VDC	12 - 30 VDC	10 - 30 VDC	10 - 30 VDC

I-Sens

Actuator – active shims

R&D Clusters

Tool set-up in the laboratory

Tool set-up in the laboratory

The process of developing an intelligent control system

i-cont

where N is the number of design parameters taken K at a time. For instance, the case of N=5 and K=3, $N_{\rm E}$ is equal to 10

RISE - Research Institutes of Sweden

ISTAMP ANN-based application

Data transition between MATLAB & PLC

<pre>function y = LRSM01(DP1,DP2)</pre>					
<pre>%% '1 = linear' - Constant and linear terms (the default)</pre>					
A =[-5.1182 0.1803 0.0434 0 0 0];					
%% '2 = interaction' – Constant, linear, and interaction terms					
% A =[-6.1151 -11.5619 0.0470 0.0408 0 0];					
%% '3 = quadratic' - Constant, linear, interaction, and squared terms					
% A =[-247.3913 -38.7169 1.7800 0.1382 -0.5706 -0.0031];					
%% '4 = purequadratic' – Constant, linear, and squared terms					
% A =[391.8743 0.1245 -2.7804 0 -0.0852 0.0050];					
%% RSM equation					
y = A(1) + A(2)*DP1 + A(3)*DP2 + A(4)*DP1*DP2 + A(5)*DP1^2 + A(6)*DP2^2;					
end					

THE SWEDISH

Manufacturing R&D Clusters

	<pre>(* * File: TEST.exp * File: TEST.exp * IEC 61131-3 Structured Text (ST) code generated for subsystem "TEST/MATLAB Function" * Model name : TEST * Model version : 1.29 * Model creator : raminmo * Model last modified by : raminmo * Model last modified on : Wed May 10 11:16:17 2023 * Model Sample time : 0s * Subsystem name : TEST/MATLAB Function * Subsystem sample time : 0.25 * Simulink PLC Coder version : 3.4 (R2021a) 14.4Nov-2020 * Simulink PLC Coder version : 3.4 (R2021a) 14.4Nov-2023 * Simulink PLC Coder version : 3.4 (R2021a) 14.4Nov-2023 * Simulink PLC Coder version : 3.4 (R2021a) 14.4Nov-2023 * Simulink PLC Coder version : 3.4 (R2021a) 14.4Nov-2023 * Simulink PLC Coder version : 7.4 (R2021a) 14.4Nov-2023 * Simulink PLC Coder version</pre>				
	* Target IDE selection : 35 CoDeSys 2.3 * Test Bench included : No * * FUNCTION_BLOCK MATLAB0 VAR_INPUT DP1: LREAL; END_VAR VAR_OUTPUT y: LREAL; END_VAR	•			
•	<pre>(* Outport: '<root>/y' incorporates: * /MATLAB Function: '<root>//MTLAB function' *) (* '1 = linear' - Constant and linear terms (the default) *) (* MATLAB Function 'WATLAB Function': '<s1::1' *)<br="">(* '2 = interaction' - Constant, linear, and interaction terms *) (* 4 = [-6.1151 - 1.150 9.04370 9.0438 0 9]; *) (* '2 = underatic' - Constant, linear, interaction, and squared terms *) (* 4 = [-6.1151 - 1.151 9.0470 9.0488 0 0]; *) (* '4 = punequadratic' - Constant, linear, interaction, and squared terms *) (* A = [-247.3913 - 38.7169 1.7800 9.1382 - 0.5706 - 0.0031]; *) (* '4 = punequadratic' - Constant, linear, and squared terms *) (* A = [391.8743 0.1245 - 2.7804 0 - 0.0852 0.0050]; *) (* RSM equation *) (* <s10.1112' *)<br="" +="" a(2)*dp1="" a(3)*dp2="" a(4)*dp1*dp2="" a(5)*dp1^2="" a(6)*dp2^2;="" y="A(1)">y := ((0.1803 * DP1) + -5.1182) + (0.0434 * DP2); END_FUNCTION_BLOCK</s10.1112'></s1::1'></root></root></pre>				

 Sport Tree
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

Further implementations

- Establish seamless interaction between ISTAMP Application with the existing Control System
 - Control av Input & Output
 - PLC Source code
 - Implementation of Correction
- Increase the quantity of data points based on SFEA to improve Predictor and Corrector replies.
- Validation, validation and validation
- Publication
- Develop hybrid control systems, i.e. calibrate control systems with real industrial data

