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Machinability

Source: Adapted from Metal cutting theories in practice, Jan-Eric Ståhl and Partick De Vos H Opitz, W König, 1968

The machinability of an alloy is similar to the palatability of wine ‒ easily appreciated but not
readily measured in quantitative terms.
Edward M. Trent
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o Up to 17% variation in yield strength (Rp0.2)
o Up to 15% variation in tensile strength (Rm)
o Variations in hardness
o Variations in oxide type/amount according to ASTM E45
o Variations in amount of carbo-nitride former elements

Batch-to-batch material variation in a micro-alloyed steel

o Pearlite lamellar spacing
o Pearlite colony size
o Prior-austenite grain size
o Amount of precipitants
o Prior work-hardening

Do have significant impacts on mechanical properties.

o Non-metallic inclusion type, size & amount
o Amount of free nitrides

Do not have major impacts on mechanical properties.

Casting

Thermo-mechanical processes

(Ti,V)(C,N) precipitates:
• Control grain growth during austenitisation & forging
• Influence mechanical properties



Effects of thermo-mechanical processes 
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Batch-to-batch variations
Variations in the equilibrium amount
(volume fraction) of (V,Ti)(C,N) precipitates

Normalised volume fraction of (V,Ti)(C,N) with 
aging time under different isothermal conditions

20 random batches

Fixed composition
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Flow stress properties of (micro-alloyed) steels
o Chemical composition (solid-solution)
o Pearlite lamellar spacing
o Ferrite grain size
o Volume fraction of (V,Ti)(N,C) precipitates
o Size of (V,Ti)(N,C) precipitates
o Prior work hardening – dislocation density

No. VPearlite (-) DFerrite (µm) VTiVCN (-) DTiVCN (nm) λPearlite (µm)
1 0.2 20 - - 0.2
2 0.5 20 - - 0.2
3 0.5 20 0.002 10 0.2
4 0.3 5 0.002 10 0.2
5 0.6 10 0.001 10 0.4

Physics-based constitutive model



Effects of non-metallic inclusions
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Batch-to-batch material variation in steels

Non-metallic inclusion within the standard specifications do not
have a major impact on mechanical properties BUT they can
significantly influence the machinability of steels.

Non-metallic inclusions:
o Control the formation of a protective layer that can affect

tool wear progression.
o Influence the contact length between the tool and the chip –

thereby affecting the cutting temperature
o Can lead to abrasive tool wear depending on their type, size

and amount.
o Can thus improve the machinability of steels based on

the deformability of the inclusions.

0.2 mm

0.2 mm
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Non-metallic inclusions – an example
An SEM and EDS analysis of the steels shows the complexity of the inclusions within the matrix. 

5μm

Nitrides
Sulfides
Oxi-Sulfides

5μm

Acquired Image 

Filtered by Feature

Filtered by Class

AZtecSteel
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AZtecSteel

CaOSiO2

Al2O3

Oxides
Nitrides

Sulfides
Oxi-Sulfides

CaO

Al2O3

SiO2

Batch 1 Batch 2

Batch-to-batch material variation in steels
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Hv (GPa)

Hardness and ductility

Pugh scale (-)Ductile

Density Functional Theory (DFT) + Machine Learning (ML)

~220 oxides, carbides, nitrides and sulfides have been analysed so far!
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Hardness estimation of TiC1-xNx carbo-nitrides 

Ti

N

C

o A supercell including 32 Ti and 32 C atoms!
o 25%, 50%, 75% and 100% of C atoms (in TiC supercell) were replaced by N atoms (randomly distributed)!  

24.1 25.8 29.8
20. 4

19.3



Physics-based machinability assessment 
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Physics-based platform
M

achinability assessm
ent

Estimation of thermo-mechanical loadsPhysics-based constitutive model 

Physics-based wear model Physics-based wear estimation

Stress distribution Temperature profile
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o Value of the maximum temperature
o Location of the maximum temperature

Simulation of interface temperature

Semi-analytical models Hybrid-FEM
Temperature [℃]

o Good efficiency
o Good accuracy – less accurate near the cutting edge

o Better efficiency – calculates in 30-60 seconds!
o Better accuracy – improved accuracy near the cutting edge
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Physics-based wear prediction – an example

WEAR MODEL
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WEAR MODEL
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MCutSim V1.0 – An open-source software
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Outlook

o Physics-based tool wear estimation when using coated and uncoated tools: Abrasion, dissolution-
diffusion, oxidation & chemical interaction.

o Databases are being developed for Ni-, Ti- and Fe-based alloys. Extending the models for a
practical range of strain rates and temperature.

o Coupled with microstructure simulation.

15 seconds of cooling – water quenching from 850°C
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Background 

Forging company A

Forging company B

Material supplier A

Material supplier C

Material supplier C

Material supplier D

Material supplier B

Material certificates & data analytics
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Background 

Class 1: Steel supplier A
Class 2: Steel supplier B
Class 3: Steel supplier C
Class 4: Steel supplier D

Input: Chemical composition of all batches

Conclusion:
It is possible to determine the steel company based on the input
materials in ~99% of the cases. There are differences in steel
compositions specific to the steel mill.

60% training dataset
20% Validation dataset
20% test dataset
Neural Network Clustering, 8 layers

Forging company A & B
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