

A framework for the physics-based estimation of tool wear in machining process

Presenters:C. Salame,Email: salamec@chalmers.seA. Malakizadi,Email: amir.malakizadi@chalmers.se

Department of Industrial and Materials Science (IMS), Chalmers University of Technology, Gothenburg, Sweden

Date: 09-05-2023

Machinability

The machinability of an alloy is similar to the palatability of wine – easily appreciated but not readily measured in quantitative terms.

Edward M. Trent

Source: Adapted from Metal cutting theories in practice, Jan-Eric Ståhl and Partick De Vos

H Opitz, W König, 1968

Batch-to-batch material variation in a micro-alloyed steel

- \circ Up to 17% variation in yield strength (Rp_{0.2})
- Up to 15% variation in tensile strength (Rm)
- Variations in hardness
- Variations in oxide type/amount according to ASTM E45
- o Variations in amount of carbo-nitride former elements

(Ti,V)(C,N) precipitates:

- Control grain growth during austenitisation & forging
- Influence mechanical properties

Casting

- Non-metallic inclusion type, size & amount
- \circ Amount of free nitrides

Do not have major impacts on mechanical properties.

Thermo-mechanical processes

- Pearlite lamellar spacing
- \circ Pearlite colony size
- o Prior-austenite grain size
- o Amount of precipitants
- Prior work-hardening

Do have significant impacts on mechanical properties.

MCR

Effects of thermo-mechanical processes

Batch-to-batch variations

Variations in the equilibrium amount (volume fraction) of (**V**,Ti)(C,N) precipitates

Normalised volume fraction of (V,Ti)(C,N) with aging time under different isothermal conditions

Flow stress properties of (micro-alloyed) steels

- Chemical composition (solid-solution)
- \circ Pearlite lamellar spacing
- Ferrite grain size
- Volume fraction of (V,Ti)(N,C) precipitates
- Size of (V,Ti)(N,C) precipitates
- Prior work hardening dislocation density

No.	V _{Pearlite} (-)	D _{Ferrite} (μm)	V _{TiVCN} (-)	D _{TiVCN} (nm)	$\lambda_{\text{Pearlite}}\left(\mu m ight)$
1	0.2	20	-	-	0.2
2	0.5	20	-	-	0.2
3	0.5	20	0.002	10	0.2
4	0.3	5	0.002	10	0.2
5	0.6	10	0.001	10	0.4

Effects of non-metallic inclusions

Batch-to-batch material variation in steels

Non-metallic inclusion <u>within the standard specifications</u> **do not** have a major impact on mechanical properties **BUT** they can significantly influence the machinability of steels.

Non-metallic inclusions:

- Control the formation of a protective layer that can affect tool wear progression.
- Influence the contact length between the tool and the chip thereby affecting the cutting temperature
- Can lead to abrasive tool wear depending on their type, size and amount.
- Can thus improve the machinability of steels based on the deformability of the inclusions.

Non-metallic inclusions – an example

An SEM and EDS analysis of the steels shows the complexity of the inclusions within the matrix.

Sulfides

Oxi-Sulfides

5µm

AZtecSteel

Batch-to-batch material variation in steels

AZtecSteel

Hardness and ductility

Density Functional Theory (DFT) + Machine Learning (ML)

~220 oxides, carbides, nitrides and sulfides have been analysed so far!

Hardness estimation of TiC_{1-x}N_x carbo-nitrides

• A supercell including 32 Ti and 32 C atoms!

• 25%, 50%, 75% and 100% of C atoms (in TiC supercell) were replaced by N atoms (randomly distributed)!

Physics-based machinability assessment

Physics-based platform

Physics-based wear model

Chip

Ž

Co

WC

Abrasive particles

Tool

WC

Workpiece

[Fe]_{Co} [Co]_{Fe} [W]_{Fe} + [C]_F

Estimation of thermo-mechanical loads

Machinability assessment

14

Simulation of interface temperature

- Value of the maximum temperature
- **Location** of the maximum temperature

- Good efficiency
- Good accuracy less accurate near the cutting edge

- Better efficiency calculates in **30-60 seconds**!
- Better accuracy improved accuracy near the cutting edge

Physics-based wear prediction – an example

MCutSim V1.0 – An open-source software

Outlook

- Physics-based tool wear estimation when using coated and uncoated tools: Abrasion, dissolutiondiffusion, oxidation & chemical interaction.
- Databases are being developed for Ni-, Ti- and Fe-based alloys. Extending the models for a practical range of strain rates and temperature.
- Coupled with microstructure simulation.

Acknowledgements

Background

Material	certificates	& data	analytics
----------	--------------	--------	-----------

Material supplier A		
Material supplier B	Forging company A	
Material supplier C		
Material supplier C		
	Forging company B	
Material supplier D		

Input: Chemical composition of all batches

Forging company A & B

Class 1: Steel supplier A Class 2: Steel supplier B Class 3: Steel supplier C Class 4: Steel supplier D

Conclusion:

It is possible to determine the steel company based on the input materials in ~99% of the cases. There are differences in steel compositions specific to the steel mill.

60% training dataset20% Validation dataset20% test datasetNeural Network Clustering, 8 layers

All Confusion Matrix

