We, humans are the first and only "intelligent" species practicing linear economy on a circular planet and soon we'll be the last to have practiced it!

- Amir Rashid

Circular Economy driven transformation in manufacturing Challenges and opportunities

Agenda

- Understanding Circular Economy
- Manufacturing in Circular Economy
 - Challenges
 - Opportunities
- Circular Manufacturing System
- Call to action!

Sustainability challenges in Linear Economy

The natural eco-system damaged in doing business can be regenerated also in doing business; it's just to change the way we do business!

- Amir Rashid

Circular Economy: the fundamental principles!

Source: EMF

Circular Economy: the circulation principle!

Source: N Bocken et al 2015

Circular Economy: the inertia principle!

Circularity as a system!

"Circularity" in linear environment!

- 4.8 tons of waste generated per EU inhabitant in 2020 where Manufacturing industry was 4th largest contributor
- Taking all waste into account only 39.2 % of waste were recycled and 31.3 % landfilled in the EU in 2020.
- Our world is considered only 8.6%
 "circular" with Sweden being only 3.4%
- Remanufacturing intensity in Europe is only 1.9% of the total manufacturing (aerospace, automotive, heavy duty and off-road (HDOR) equipment, EEE, machinery and medical equipment, furniture, rail (rolling stock) and marine sectors) activity

Source: Eurostat (online data code: env_wasgen)

Linear Manufacturing: Take- Make- Use- Dispose approach

Modern manufacturing systems are material, energy and information intensive entities however **utilisation of the value** these systems create remains **suboptimal** in systemic and lifecycle perspective

Primary focus of a linear manufacturing OEM

– – - Secondary focus of a linear manufacturing OEM

Circular Manufacturing Systems (CMS) - Multiple USE and LIFEcycle approach

CMS refer to systems that are **designed intentionally to close the loop** of components or products preferably in their original form, through multiple use & lifecycles د ک Recycle Refurbish Remanufacture Repair Material Material Service provision Resource & Manufacturing Use /Distribution extraction processing energy recovery

Primary focus of a circular manufacturing enterprise

Challenges!

- Deeply embedded linear models in the manufacturing sector present significant inertia to circular transformation
- Technical challenges:
 - Developing new technologies, processes and materials that can enhance RE- life of product and materials
 - New infrastructure to support the RE-life of product and materials in a transparent, reliable, secure and technically sound manner

• Economic challenges:

- Higher upfront costs connected to circular manufacturing practices
- Need for new business models for capturing full value of circular products and services
- Lack of clear regulatory frameworks that can incentivize adoption of circular practices- level playing field in competition with the lingering liner economy

• Cultural challenges :

- New mindset and ways of thinking about products and services
- Collaboration and partnerships across the value cycles and networks
- Engaging with users (consumers of the linear economy) in their roles as customers and suppliers at the same time
- This transformation is complex however it offers new opportunities as well as a sustainable future

Opportunities!

 Besides sustainability and resilience, circular manufacturing presents a plethora of opportunities to thrive as a future business

• Economic opportunities:

- Increased resource efficiency- reuse enabled through products designed for repair, remanufacturing and recycling
- New revenue streams- use-based value approach creates revenue streams beyond the cost-based approach
- Brand reputation- sustainability embedded in the products and business models
- Reduced costs- end of life responsibility is replaced with a business opportunity

• Environmental opportunities:

- Reduced waste and pollution
- Reduced emissions
- Conserve natural resources
- Supply chains resilient to natural/global disruptions

• Societal opportunities:

- Inclusive and equitable business models benefiting all stakeholders
- Increased access to products/services through affordability in the new business models
- Drive social innovation through development of local economies to create new forms of value for society- social ties, trust, social resilience, socially responsible consumption behavior

Circular Manufacturing Systems framework- a systemic approach

Circular Manufacturing Systems: mapping to Circular Value Management model

Innovative value proposition models that aim at extending and intensifying use, circling and dematerializing resource loops

ICT

Ϋ́ς

Information & Communication Technology as a system enabler that aims at information acquisition and analysis as well as tracing and tracking the products over their multiple lifecycles

Product design & manufacturing

Products designed and manufactured to intentionally close the loop (e.g., design for value retention through multiple lifecycles)

Supply chains & networks

Integrated forward & reverse supply chains and networks which can handle the dynamics of multiple lifecycle products used through appropriate value proposition model

Value proposition space for circular transition

- Transition from productoriented to service-oriented business models
 - Increased circularity, i.e., reduced leakage in the system
 - Increased complexity, i.e., it requires a radical change in the way businesses operate

Value chains/networks in Circular Manufacturing Systems

IntRAnet and Internet of circular products and Materials

Example of a systemic analysis through modelling and simulation: Case of a washing machine- number of users in multiple lifecycles!

EoL WMs 100

Example of a systemic analysis through modelling and simulation: Case of a washing machine- lifecycle costs!

Example of a systemic analysis through modelling and simulation: Case of a washing machine- lifecycle revenues!

Example of a systemic analysis through modelling and simulation: Case of a washing machine- lifecycle environmental performance!

Example of a systemic analysis through modelling and simulation: Case of a washing machine- lifecycle profits

Aristotle's wisdom: took about 2500 yrs. for "common" understanding!

"Real wealth is based on use, not ownership"

Circular transition-points to ponder!

Join forces to set-up: A national hub of Circular Manufacturing Systems

Leading by example

the Swedish manufacturing industry, research and academia shall join forces

Systemic approach

research and innovation on business, technology and policy

The Focus

implementing circular business solutions in the manufacturing industry

