

Al solutions for predictive maintenance: Demonstrations from real-world use cases

Ebru Turanoglu Bekar, PhD Senior Lecturer in Production Systems

Chalmers University of Technology, Department of Industrial and Materials Science, **Phone:** +46 (0)31-772 64 13 **Email:** ebrut@chalmers.se

Agenda

- Maintenance needs in the digitalization era
 - An overview of Predictive Maintenance (PdM)
- Artificial Intelligence (AI) powered PdM
 - Key components of AI solutions for PdM
 - An overview of Machine Learning (ML) models for PdM
- Demonstration from real-world use cases in manufacturing
 - · Use-case 1: Machine health index construction and monitoring
 - Use-case 2: Early fault (air leakage) detection in a pneumatic system
- Implementation considerations and challenges
- Conclusion

Maintenance needs in the digitalization era

- Increasing complexity,
- Growing cost pressure,
- Enhanced efficiency,
- Proactive maintenance and digitalization-driven maintenance strategies,
- Predictive Maintenance (PdM) has emerged as a solution to address maintenance needs proactively!

Maintenance needs in the digitalization era

An overview of Predictive Maintenance (PdM)

- PdM: Intelligent health monitoring of equipment
 - PdM helps avoid future equipment failure through intelligent monitoring.
 - Predicts failure time for optimal maintenance scheduling.
- Pinpointing problems in complex machinery
 - PdM identifies problems in complex machinery, aiding in efficient maintenance.
 - Helps identify specific parts that require fixing.
- PdM vision is failure-free production.

Artificial Intelligence (AI) powered PdM

Key components of AI solutions for PdM

7

Demonstration from real-world use cases in manufacturing

Collaborative Research Projects

Project Name	Funder/Call	Duration/Funding	Role
SUstainability, sMart Maintenance and factory design Testbed (SUMMIT)	VINNOVA (National Sweden) SIP Produktion2030, Utlysning 7, Hösten 2017:1, Grant number: 2017-04773	11/2017 - 04/2021 8 MSEK	Project member
For details, <u>https://produktion2030.se/en/</u>	projekt/summit-sustainability-smart-mai	ntenance-and-factory-des	ign-testbed/
Predictive Maintenance using Advanced Cluster Analysis (PACA)	VINNOVA (National Sweden), SIP Produktion2030, utlysning 11, Grant number: 2019-00789	03/2019 - 08/2022 5 MSEK	Project leader
For details, <u>https://produktion2030.se/en/</u>	projekt/predictive-maintenance-using-ad	lvanced-cluster-analysis-	paca/

The goal is to analyze vibration measurements for critical tooling machines on an engine component line for PdM implementation.

Multiple data sources

- External sensors (vibration data)
- Machine PLC (machine data)

Different motor blocks

• 2,3,4 and 5

Goal Data Approach Results

- Vibration measurements with 1s resolution from:
 - Spindle, spindle motor, table, and gearbox
- Time and frequency domain features:
 - Acceralation_RMS, Accelaration_peak, and Velocity_RMS
- Focus on the idle time of the machine. The spindle is "spinning up"
 - 5 seconds before each new motor block

CHAI MERS

Goal Data Approach Results

CHALMERS

• Promising health indicators for easily monitoring the performance of the machines over time (cycles).

• Successfully identified anomalies with 99% validation accuracy.

CHALMERS

2023-06-01

• Anomaly detection: Useful and diagnostic information!

Conceptual model representing the wrapping process

13

Goal: Develop a data-driven detection method for predicting future failures in the pneumatic system.

- Objective: Detect the early leakage stage as a precursor to potential failures.
- Focus on identifying early signs of leakage in the pneumatic system.
- Data-driven approach: Utilize data analysis techniques and ML algorithms.

Results

Approach

 The continuous measurement of IoT sensors data, including

Data

- Pressure (Bar)
- Airflow (l/m)

Goal

- Temperature (Cel)
- The behavior of airflow is easy to distinguish the state of the machine:
 - · The cyclical pattern when the machine is working
 - A flat non-cyclical pattern when the machine is idle.
- Lack of failure data

Visualized data of packaging machine using Grafana.

The orange line shows the pressure, the blue line shows the airflow and the green line shows the temperature.

Source: CRISP-DM methodology [2].

• Identification of the most significant features.

• The RUSboosted model successfully detects air leakage with 98.73% validation accuracy.

Success in PdM = Domain expertise powered AI

infrastructure to develop trustworthy PdM

Sources used in the presentation

- [1] Fausing Olesen, J., & Shaker, H. R. (2020). Predictive Maintenance for Pump Systems and Thermal Power Plants: State-of-the-Art Review, Trends and Challenges. Sensors, 20(8), 2425.
- [2] Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (Vol. 1, pp. 29-39).
- The published conference paper related to Use-case 1: https://link.springer.com/chapter/10.1007/978-3-030-85906-0_65
- The published conference paper related to Use-case 2: https://ieeexplore.ieee.org/abstract/document/9612973
- The published MSc thesis related to Use-case 2: <u>https://odr.chalmers.se/server/api/core/bitstreams/a6bdf293-e070-4d98-ada5-</u> <u>d7559b4594d4/content</u>

A heartfelt thank you goes out to

- VINNOVA SIP Produktion2030 for their research grants!
- All our valued partners in the PACA and SUMMIT projects!
- Graduated MSc students who contributed to the PACA project!
- Production Area of Advance at Chalmers University of Technology!

Thank you all for your listening! Any questions & reflections?

CHALMERS UNIVERSITY OF TECHNOLOGY