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Maintenance needs in the
digitalization era

* Increasing complexity,
« Growing cost pressure,
» Enhanced efficiency,

 Proactive maintenance and digitalization-driven
maintenance strategies,

* Predictive Maintenance (PdM) has emerged as a
solution to address maintenance needs proactively!
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Maintenance needs in the digitalization era

An overview of Predictive Maintenance (PdM)

« PdM: Intelligent health monitoring of equipment

* PdM helps avoid future equipment failure through
intelligent monitoring.

* Predicts failure time for optimal maintenance
scheduling.

* Pinpointing problems in complex machinery

« PdM identifies problems in complex machinery,
aiding in efficient maintenance.

* Helps identify specific parts that require fixing.

« PdM vision is failure-free production.

Opereting
more
efficiently

Operating
more
realibly

Increased
social
sustainability

2023-06-01



Maintenance needs in the digitalization era

What does a PdM do?

S my machine Anomaly Detection
operating normally?
Why is my machine .
DATA g behaving Condition mdl DECISION
abnormally? Monitoring

How much longer .
can | operate my Remaining Useful
machine? Life Estimation
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Artificial Intelligence (Al) powered PdM

Key components of Al solutions for PdM
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Maintenance needs in the digitalization era

An overview of ML models for PdM )
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Source: An overview of various methods that can be chosen depending on what information is desired and to what extent
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Demonstration from real-world use cases In
manufacturing

Collaborative Research Projects

Project Name Funder/Call Duration/Funding
. . . VINNOVA (National Sweden)
SUstainability, sMart Maintenance . .
am'j fac't:)f aicr T('astbe y SIP Produktion2030, Utlysning 7, 11/2017-04/2021 [ .
y aesig Hosten 2017:1, 8 MSEK )

(SUMMIT) Grant number: 2017-04773

For details, https://produktion2030.se/en/projekt/summit-sustainability-smart-maintenance-and-factory-design-testbed/

VINNOVA (National Sweden),
SIP Produktion2030, utlysning 11,
Grant number: 2019-00789

03/2019 - 08/2022
5 MSEK

Predictive Maintenance using
Advanced Cluster Analysis (PACA)

Project leader

For details, https://produktion2030.se/en/projekt/predictive-maintenance-using-advanced-cluster-analysis-paca/
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Use-case 1: Machine health index construction
and monitoring
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Use-case 1: Machine health index construction
and monitoring

* Vibration measurements with 1s resolution from: =
« Spindle, spindle motor, table, and gearbox

« Time and frequency domain features:
* Acceralation_RMS, Accelaration_peak, and Velocity RMS

Process Value
=

« Focus on the idle time of the machine. The spindle is "spinning up”
5 seconds before each new motor block
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Use-case 1: Machine health index construction
and monitoring

Data preparation and feature extraction

Step 1: Data Preprocessing and Feature Extraction
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and monitoring

M Approach > Results >

12

Use-case 1: Machine health index construction

* Promising health indicators for easily « Successfully identified anomalies with 99%
monitoring the performance of the machines validation accuracy.
over time (cycles).

* Anomaly detection: Useful and diagnostic
information!

Health Indicator Value
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Use-case 2. Early fault (air leakage) detection
In a pneumatic system

ife Seaming clamp
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Conceptual model representing the wrapping process

Plastic Bag

Bearing —— -

Conveyor —s

Conceptual model representing

13 the packaging process

Goal: Develop a data-driven detection method for
predicting future failures in the pneumatic system.

Objective: Detect the early leakage stage as a
precursor to potential failures.

Focus on identifying early signs of leakage in the
pneumatic system.

Data-driven approach: Utilize data analysis techniques
and ML algorithms.
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Use-case 2. Early fault (air leakage) detection
In a pneumatic system

* The continuous measurement of 10T sensors
data, including

* Pressure (Bar)

. , VN YA P Nl s UL -'“
Airflow (I/m) -~ 1T “iw N T

» Temperature (Cel)

‘.\l\ ‘ “ ! | |
' ;s\,,;_” , !!\‘ j"" oW ,.‘l .Hl'”m

* The behavior of airflow is easy to distinguish
the State Of the maChIne: Visualized data of packaging machine using Grafana.

. The Cyclical pattern When the machine iS Working The orange line shows the pressure, the blue line shows the airflow and the green line

shows the temperature.

+ Aflat non-cyclical pattern when the machine is
idle.

* Lack of failure data
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Use-case 2. Early fault (air leakage) detection
In a pneumatic system

Labeling was done with artificially
Pack 1 . . .
48 hours of induced anomalies by two experiments!
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Use-case 2. Early fault (air leakage) detection
In a pneumatic system

m Approach > Results >

« Identification of the most significant features. » The RUSboosted model successfully detects
air leakage with 98.73% validation accuracy.
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Implementation considerations and challenges

Data availability
and quality

Shortage of skills

Skills and and talent required
’ expertise a

Characteristics of big
data: volume, velocity,
variety, etc.

Data handling
analysis,
preprocessing

Management &

_ technical
Scalability and IFiEE e e Security, privacy,
deployment information sharing,
consideration etc.
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Conclusion

Success in PdM = Domain expertise powered Al

Having the right Framing the Evaluating the Actionable
data available problem predictions decisions
(Rel . appropriately properly Model

elevant, ode
sufficient, quality) en(gl;ﬁgtgrri(na 9) (Model evaluation) deployment)

2023-06-01



Sources used In the presentation

* [1] Fausing Olesen, J., & Shaker, H. R. (2020). Predictive Maintenance for Pump Systems and
Thermal Power Plants: State-of-the-Art Review, Trends and Challenges. Sensors, 20(8), 2425.

* [2] Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data
mining. In Proceedings of the 4th international conference on the practical applications of
knowledge discovery and data mining (Vol. 1, pp. 29-39).

* The published conference paper related to Use-case 1:
https://link.springer.com/chapter/10.1007/978-3-030-85906-0_65

* The published conference paper related to Use-case 2:
https://ieeexplore.ieee.org/abstract/document/9612973

* The published MSc thesis related to Use-case 2:
https://odr.chalmers.se/server/api/core/bitstreams/a6bdf293-e070-4d98-ada5-
d7559b4594d4/content
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A heartfelt thank you goes out to

* VINNOVA SIP Produktion2030 for their research grants!

* All our valued partners in the PACA and SUMMIT projects!

» Graduated MSc students who contributed to the PACA project!

* Production Area of Advance at Chalmers University of Technology!

Thank you all for your listening! Any questions & reflections?
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