A systematic approach to process planning (PRODEQ)

Magnus Lundgren (KTH), Mohammad Haddad Zade (Scania), Miroslaw Chamera (Ariadne Engineering AB)

Acknowledgement for important contributions by:

Martin Boremyr (Ariadne Engineering AB) and Mikael Hedlind (Sandvik Coromant)

Process design driven part quality

Today's speakers

Magnus Lundgren KTH

Mohammad Haddad Zade

Scania

brix@kth.se

mohammad.haddadzade@scania.com

Miroslaw Chamera Ariadne Engineering <u>Miroslaw@ariadne-eng.se</u>

PRODEQ – WHAT and WHY

Aim of PRODEQ is to:

- Strengthen process planning methods and tools in Swedish industry.
- Promote cross-industrial cooperation between Swedish automotive and aerospace industry.
- Strengthen collaboration between industry, institute and university.

PRODEQ – WHAT and WHY

Objectives with PRODEQ is to:

- Improve strategies for part and process measurement and control
 - Reduced variation
 - Improved ability to manufacture parts with future tighter tolerances
- Improve standardisation and dissemination of common work methods
 - Established best practice for process design
 - Eliminate duplication of method development work
- Shorten product introductions
 - Method and tools for a better first definition of production requirements
 - Improved manufacturability by early involvement of manufacturing aspects in product design
- Improve quality control
 - Ability to relate production and process requirements to product and process functions
 - Finer and continuous control of part quality
- Optimize use of production resources
 - Knowing where to measure less and where to measure more
 - Complementary process evaluation in addition to capability indexes as acceptance criteria's

Project structure

WP4: Project result dissemination

WP2: Quality engineering method development

WP3: Model based process design

WP1: Project management

We will present

A systematic process planning approach

Mohammad Haddad Zade

Scania

Model-based Tolerance Chain Analysis Miroslaw Chamera

Ariadne Engineering

Process Planning - A link between...

Find the most critical feature

What is a feature in PRODEQ?

(2)

• A feature is a set of surfaces which are used to define a requirement on a part.

At this example, the requirement 1 is just the cylindrical surface (single feature) while the requirement 2, the cylindrical surface, reference A and B make the feature (related feature)

Find the most critical feature

 $C_{I} = K_{a} \times K_{b} \times K_{c} \times K_{d} \times K_{e} \times K_{f} \times \prod_{i=1}^{n} K_{g_{i}} \times K_{h}$

C_I: Critical index

 K_a : Tolerance size / surface roughnessAffected by design K_b : Type of toleranceAffected by design K_c : Feature size K_i : Feature type K_d : Feature typeAffected by design K_e : Production complexityAffected by process planning K_f : Heat treatment effectAffected by process planning K_h : Tool effectAffected by process planning

K_a: **Tolerance range/ surface roughness**

Tolerance range

Tighter tolerances lead to:

- Increased setup and inspection time
- Higher tooling and equipment costs
- More often inspections
- Greater complexity of machining
 operations
- Difficulty in maintaining tolerances over time

K_b: Type of tolerance

Dimensional tolerances

Туре	K _b
Linear	1
Angle	2

Parameters that affect geometrical tolerances order:

- The material being machined
- Feature orientation
- Part geometry

Geometrical tolerances

Туре	K _b
Straightness	
Flatness	
Circularity	
Cylindricity	
Line profile	
Surface profile	
Parallelism	
Perpendicularity	
Angularity	
Position	
Concentricity	
Symmetry	
Circular run-out	
Total run-out	

K_c: Feature size

Challenges for Small Features:

- Require high-precision machining tools and techniques.
- Tool wear and breakage can be a significant issue.
- Chip evacuation can be challenging.
- Measurement can be difficult to conduct.

Challenges for Large Features:

- Require larger and more powerful machining equipment.
- Material removal rates can be slower.
- Heat generation can affect accuracy and quality.

K_d: Feature type (Geometric complexity)

Challenges with more complex features:

- Increased machining time
- Tool access and clearance
- Machining accuracy
- Measurement accuracy
- Measurement repeatability

Note: The shape of a feature is related to the surface that has the requirement on it, rather than to any references or datums.

Reference dependency graph

Create a graph that shows the dependencies between datums (references).

Note: several datums may be located at the same level if they are independent.

Production complexity

		Production complexity	
		setup complexity	Reference level
The same setup and the same tool			
The same setup but different tools			
The same operation and different setups	One surface is used as a locating/probing surface		
	Completely independent surfaces		
Two different operations	Using the same locating surface		
	Using different surfaces		

Note: As we go lower in the reference dependency graph, we should increase the production complexity value.

Example

K_f: Heat treatment effect

Affected by heat treatment	К _f
No	1
Yes	2

*A feature is considered not to be affected by heat treatment if there is no heat treatment on the surfaces of the feature/references or if all surfaces of the feature/references will be machined after the heat treatment.

Example

The machining step for this part is:

1- Soft turning of the datum C and the groove

Η

- 2- Heat treatment
- 3- Hard turning of the datum C

C

K_g: Machine performance

- Accuracy
- Surface finish
- Dimensional stability
- Production speed

The number of tools which are used in one operation to produce the feature

- finishing
- profiling

Tolerance assignment cycle

What we would like to achieve with simulation

- Find generic approach for simulation
 - A structured way to build a tolerance/variation analysis model
 - A way to define what to analyze
 - Including all relevant tolerances/variations
- Analyze proposed methods
 - Method/methods first defined manually (based on previous experience, cost, etc.)
 - Simulation can verify a proposed method assess the chance to be successful
 - Evaluate several different methods to find the best (evaluate full methods or e.g. just test small differences in datum positions)
 - Assess expected total variation from a method
 - Find critical features in a specific method (Need to loosen or tighten requirements?)

Two levels of variation

- Level 1 Operation variation (machining or other process)
 - This is modeled as tolerances on "component level" (GPS tolerances inside each component: Setup 1, Setup 2, etc)
 - Accuracy of machine Machine dependent, could vary with e.g. machine speed or distance from machine zero)
 - Requirement for allowed machining variation is defined as "tolerances"
- Level 2 Clamping variation (clamping or other fixation/handling process)
 - This is modeled as variation on "assembly level"
 - Accuracy of clamping equipment
 - Accuracy of manual/automatic setup handling
 - Requirement for allowed clamping variation is defined as "assembly tolerances"

Level 1 Operation variation - Definition

- Datums are defined corresponds to clamping surfaces
- Variation for each "machined" surface is defined as a tolerance (including both allowed translations and rotations)

Level 2 - Clamping variation

Clamping Griphipment

Clamping Variation Modelling

Clamping Variation

Simulate process variation – Clamping variation

Simulate process variation – Assembly sequence

- Setup 1-5 components are included in analysis
- All components are assembled "on top of each other"
- Components for each setup are assembled according to clamping
- The component's clamping surfaces are connected to corresponding surfaces in previous components (where it appears the first time)
- Color coding shows the assembly sequence

Analysis - Measurements

- Relevant measurements are defined
- Example: Vertical hole alignment (in relation to A, bottom surface)
- Results:
 - Total variation from used method
 - List of largest contributing variations
 - Identifying "critical features" (variations)
 - Identify feature sensitivities

Name	Contribution
BOXY_IPM_SETUP_3;1 / to BOXY_IPM_SETUP_1;1,1 RZ (0.01 at 34.5) / RZ	28,96 %
BOXY_IPM_SETUP_5;1 / to BOXY_IPM_SETUP_1;1,1 RZ (0.01 at 34.5) / RZ	27,43 %
BOXY_IPM_SETUP_5;1 / to BOXY_IPM_SETUP_1;1,1 TY (±0,01) / TY	10,90 %
BOXY_IPM_SETUP_3;1 / to BOXY_IPM_SETUP_1;1,1 TY (±0,01) / TY	10,90 %
BOXY_IPM_SETUP_3;1 / S3 - Hole1 to A C D / TY	8,18 %
BOXY_IPM_SETUP_5;1 / S5 - Hole3 to A E D / TY	8,18 %
BOXY_IPM_SETUP_3;1 / S3 - Hole1 to A C D / RX	2,73 %
BOXY_IPM_SETUP_5;1 / S5 - Hole3 to A E D / RX	2,73 %

Simulation analysis – Results

Animation – Contributions 1 & 2

- 1. Clamp rotational variation 56%
- 2. Clamp translational variation 22%
- (3. Hole position tolerances 22% Not animated)

0	

Display: Statistical Contributions V Based	d on: Variables			
les - Dist Norm To A (RelDist_Norm	ToA' Statist			
lame Contribution				
BOXY_IPM_SETUP_3;1 / to BOXY_IPM_SETUP_1;1,1 RZ (0.01 at 34.5) / RZ	28,96 %			
BOXY_IPM_SETUP_5;1 / to BOXY_IPM_SETUP_1;1,1 RZ (0.01 at 34.5) / RZ	27,43 %			
BOXY_IPM_SETUP_5;1 / to BOXY_IPM_SETUP_1;1,1 TY (±0,01) / TY	10,90 %			
BOXY_IPM_SETUP_3;1 / to BOXY_IPM_SETUP_1;1,1 TY (±0,01) / TY	10,90 %			
BOXY_IPM_SETUP_3;1 / S3 - Hole1 to A C D / TY	8,18 %			
BOXY_IPM_SETUP_5;1 / S5 - Hole3 to A E D / TY	8,18 %			
BOXY_IPM_SETUP_3;1 / S3 - Hole1 to A C D / RX	2,73 %			
BOXY_IPM_SETUP_5;1 / S5 - Hole3 to A E D / RX	2,73 %			
BOXY IPM SETUP 3;1 / to BOXY IPM SETUP 1;1,1	0.00.0/			

Outlook

- Conduct case studies to evaluate the effectiveness of the proposed method in improving product quality and reducing process planning time
- Develop a quality control plan based on the critical feature index
- Develop and validate new analytical methods and tools for tolerance allocation for IPPs
- Develop computer models/use software to simulate the tolerance chain analysis for IPPs

THANK YOU FOR YOUR ATTENTION